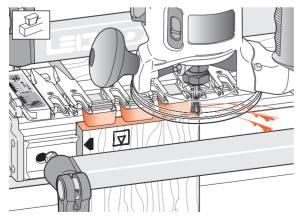

Asymmetric Dovetails

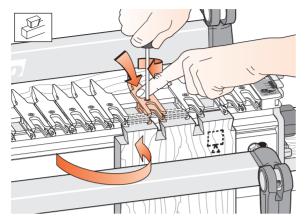
for certain procedures, you will need to use both ends of the leigh D1600 Jig. Asymmetrical joint layouts are one example. On the leigh D1600, no joints will be truly symmetrical, but they can look symmetrical. Apparent symmetry is only required for aesthetic reasons, and not for strength. Be sure you have read and understood chapters 8 through 10 before attempting these procedures.

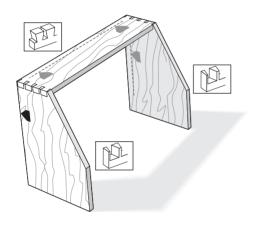
-D1600-Ch11.indd 69 4/4/05 1:34:38 PM



By *symmetrical* we mean a joint that looks or is approximately symmetrical about its centre line but is probably not, and need not be precisely symmetrical. Using the Leigh jig, it is easy to cut a joint that looks symmetrical; the pins will always align perfectly with the tails cut at the same spacing. Remember, symmetry is only required for appearance, not for joinery reasons.

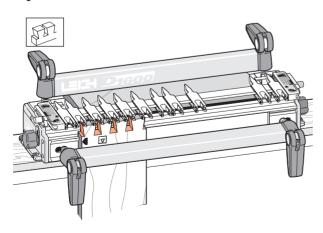
11-2


An *asymmetrical* joint has a deliberately uneven layout of pins and tails desired for a project design; for example, this drop-front drawer. The half-pin at the bottom of the drawer is much wider than the top half-pin. As the top edges of the front and sides are flush, it makes sense to use these edges against the side stops at each end of the jig. Here's how.


11-3

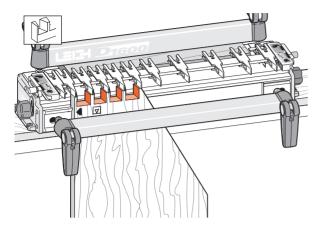
Mount the right-hand drawer sides and pins on the left end of the jig for routing, and...

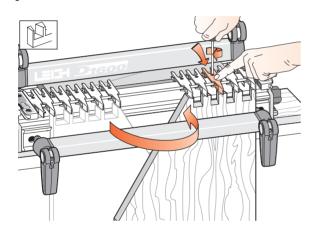
-D1600-Ch11.indd 70 4/4/05 1:34:39 PM



Turn one tailboard (like turning a page in a book) to the right end of the jig. Now lay out the fingers at the right end to match the sockets already routed. Now simply rout the left front corner (tails and pins) on the right side of the jig.

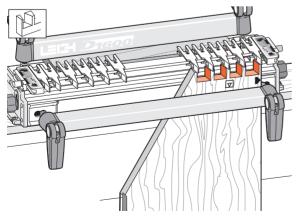
11-5


Another example of asymmetry is the top corners of a slant-front desk. The joints themselves may be symmetrical, but they must be routed on opposite ends of the jig because the sloped front edges will not register accurately against the fixed vertical side stops.


11-6

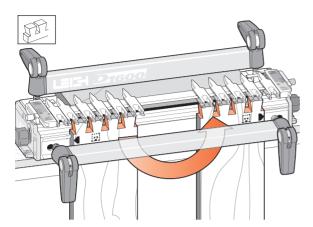
At the back of the desk both sides and top are flush, so the rear edges are set against the side stops. Place the left end of the top tail board against the left side stop \P . Rout the tails.

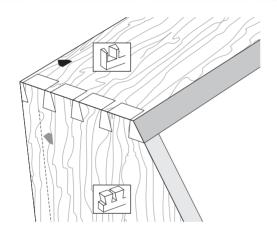
-D1600-Ch11.indd 71 4/4/05 1:34:41 PM



The left side of the desk goes against the left side stop **4**. Rout the pins.

11-8


To lay out the joint at the right end of the jig, turn the left hand tailboard (like a book page) against the right side stop. Lay out the fingers over the pins you just cut.


11-9

Place the right side of desk against the right side stop **\rightarrow**. Rout the pins.

-D1600-Ch11.indd 72 4/4/05 1:34:46 PM

Rotate the finger assembly to TD Tails mode. Clamp the tailboard in the left side of the jig and rout the tails. Then rotate the board and clamp against the right side stop to rout the tails in the other end.

11-11

Note: If, in the slant-front desk example, the pins were in the desk top and the tails in the sides, then all the parts would be routed in the opposite ends of the jig to those shown above.

-D1600-Ch11.indd 73 4/4/05 1:34:52 PM

-D1600-Ch11.indd 74 4/4/05 1:34:57 PM